with loads specified for the system, the system is free from—

- (a) Jamming;
- (b) Excessive friction; and
- (c) Excessive deflection.

## §27.685 Control system details.

- (a) Each detail of each control system must be designed to prevent jamming, chafing, and interference from cargo, passengers, loose objects or the freezing of moisture.
- (b) There must be means in the cockpit to prevent the entry of foreign objects into places where they would jam the system.
- (c) There must be means to prevent the slapping of cables or tubes against other parts.
- (d) Cable systems must be designed as follows:
- (1) Cables, cable fittings, turnbuckles, splices, and pulleys must be of an acceptable kind.
- (2) The design of the cable systems must prevent any hazardous change in cable tension throughout the range of travel under any operating conditions and temperature variations.
- (3) No cable smaller than three thirty-seconds of an inch diameter may be used in any primary control system.
- (4) Pulley kinds and sizes must correspond to the cables with which they are used. The pulley cable combinations and strength values which must be used are specified in Military Handbook MIL-HDBK-5C, Vol. 1 & Vol. 2, Metallic Materials and Elements for Flight Vehicle Structures, (Sept. 15, 1976, as amended through December 15, 1978). This incorporation by reference was approved by the Director of the Federal Register in accordance with 5 U.S.C. section 552(a) and 1 CFR part 51. Copies may be obtained from the Naval Publications and Forms Center, 5801 Tabor Avenue, Philadelphia, Pennsylvania, 19120. Copies may be inspected at the FAA, Rotorcraft Standards Staff, 4400 Blue Mount Road, Fort Worth, Texas, or at the Office of the Federal Register, 800 North Capitol Street, NW., suite 700, Washington, DC.
- (5) Pulleys must have close fitting guards to prevent the cables from being displaced or fouled.
- (6) Pulleys must lie close enough to the plane passing through the cable to

prevent the cable from rubbing against the pulley flange.

- (7) No fairlead may cause a change in cable direction of more than 3°.
- (8) No clevis pin subject to load or motion and retained only by cotter pins may be used in the control system.
- (9) Turnbuckles attached to parts having angular motion must be installed to prevent binding throughout the range of travel.
- (10) There must be means for visual inspection at each fairlead, pulley, terminal, and turnbuckle.
- (e) Control system joints subject to angular motion must incorporate the following special factors with respect to the ultimate bearing strength of the softest material used as a bearing:
- (1) 3.33 for push-pull systems other than ball and roller bearing systems.
  - (2) 2.0 for cable systems.
- (f) For control system joints, the manufacturer's static, non-Brinell rating of ball and roller bearings must not be exceeded.

[Doc. No. 5074, 29 FR 15695, Nov. 24, 1964, as amended by Amdt. 27–11, 41 FR 55469, Dec. 20, 1976; Amdt. 27–26, 55 FR 8001, Mar. 6, 1990]

## §27.687 Spring devices.

- (a) Each control system spring device whose failure could cause flutter or other unsafe characteristics must be reliable.
- (b) Compliance with paragraph (a) of this section must be shown by tests simulating service conditions.

## § 27.691 Autorotation control mechanism.

Each main rotor blade pitch control mechanism must allow rapid entry into autorotation after power failure.

## §27.695 Power boost and power-operated control system.

- (a) If a power boost or power-operated control system is used, an alternate system must be immediately available that allows continued safe flight and landing in the event of—
- (1) Any single failure in the power portion of the system; or
- (2) The failure of all engines.
- (b) Each alternate system may be a duplicate power portion or a manually operated mechanical system. The